zz_z_z: (джентельмен)
[personal profile] zz_z_z
Originally posted by [livejournal.com profile] tnenergy at Как взорвать РБМК, часть 1.

Прежде всего хочу извиниться перед читателями, для которых изложение хода аварии на ЧАЭС уже известно - вряд ли я расскажу что-то новое. Тем не менее некоторые нюансы могут быть интересны всем.


Реакторная установка РБМК-1000 в духе картинок журнала Nuclear Engineering, только победнее :)

Итак, для того, что бы разобраться в причинах взрыва на Чернобыльской АЭС, сначала нужен минимальный ликбез по нейтронной физике.

Основные два термина, которые нужны для понимания, как живется ядерному реактору - это критичность и реактивность. Первое - это стационарное состояние потока нейтронов, когда каждую секунду в реакторе происходит одинаковое количество делений ядер урана 235 и/или плутония 239, причем неважно какое именно это количество. Каждый поделившийся после поглощения атом U235 испускает еще в среднем 2,3 нейтрона, один из которых в свою очередь делит следующее поколение атомов, продолжая цепочку, а остальные улетают наружу или поглощаются без деления.

Кроме как критичным, состояние реактора может быть над- и подкритичным, соответственно, когда нейтронов в каждом следующем поколении больше единицы или меньше. Эти отличия от стационарного состояния вызываются реактивностью, положительной или отрицательной. Т.е. реактивность - это отличие критичности от единицы :), и выражается она обычно в небольших долях - например процентах.

Важно понять, что критичность и реактивность - это слегка не интуитивные свойства ядерного реактора, не связанные напрямую с мощностью. Критичность может быть на любой мощности, а ввод реактивности вызывает изменение мощности - опять же с любого уровня на любой.

Наконец, заканчивая ликбез по нейтронной физике реактора нужно вспомнить о мгновенных и запаздывающих нейтронах. Коротко - “поддувать” реактор можно только регулируя его реактивность в рамках доли запаздывающих нейтронов (а это всего 0,65% для урана 235), так как выход за эти рамки ведет к резкому ускорению нарастания мощности. Например, если мы ввели не 0,65% а 0,66% реактивности то время удвоения мощности изменится кардинально - с ~20 минут до 10 секунд. Для реактивности, равной доле запаздывающих нейтронов применяют специальную букву — 0,64% = 1 β.

Теперь, после этого мини-ликбеза перейдем к событиям 1986 года, попутно разбираясь во всяких физических явлениях и инженерных явлениях.


Структура реактора РБМК. Сверху биозащита, ниже пароводяные отводы от технологических каналов, еще ниже верхняя металлическая плита (схема "Е"), еще ниже активная зона и в самом низу система подачи воды в реактор (схемы "ОР" и "С").

В апреле 1986 года на 4 блоке Чернобыльской АЭС был запланирован эксперимент по использованию тепловой и механической инерции энергоблока для аварийного питания собственных нужд блока на случай аварии. Питание это может пригодится в случае обрыва или выключения ЛЭП от станции до единой энергосистемы, а использование инерции теоретически помогает пережить момент от обесточивания до запуска резервных дизель-генераторов (что занимает примерно 30 секунд). История этого злосчастного эксперимента вообще довольно своеобразна. Инерция ротора турбогенератора как запасной источник энергии появилась в голове разработчиков в процессе создания РБМК-1000, но при конкретной реализации оказалось довольно бессмысленной. Тем не менее она попала в эксплуатационные документы, а раз она там есть - этот режим надо испытать, правильно? Итак, в 26 апреля 1986 года этот режим работы планировалось в 4 раз (три предыдущих были неудачными по разными причинам, не связанным с атомным реактором, например в 1985 году забыли включить регистрирующие осциллографы) испытать на выводящемся на перегрузку 4 блоке.


Скан первой страницы предыдущей попытки программы испытаний на выбег в 1985 году.

Эксперимент заключался в отключении внешнего питания от блока, подключения главных циркуляционных насосов (ГЦН) - а это основная нагрузка собственных нужд к турбогенератору №8 (всего у каждого реактора РБМК-1000 два турбогенератора, у блока 4 соответственно №7 и №8), перекрытие подачи пара с реактора на турбину и наблюдение за тем, как выбегающий ротор обеспечивает энергией ГЦНы, пока не запустятся дизель-генераторы и не возьмут на себя нагрузку.

Испытание режима выбега в одном отношении принципиально отличается от выбега, автоматически возникающего в случае реальной аварии, сопровождающейся обесточиванием собственных нужд. Во втором случае выбег проходит при заглушенном реакторе, и это заглушение не зависит от работы автоматики выбега или каких-либо действий персонала АЭС, оно происходит автоматически от срабатывания аварийной защиты реактора по факту аварии. Реактор в этом процессе выбега выступает лишь как источник остаточного тепловыделения. В первом случае аварии на самом деле никакой нет, и защита реактора автоматически не срабатывает. Сигнал аварии формируется искусственно, и реактор может быть заглушен только принудительно. В этом случае, в отличие от предыдущего реактор является источником ядерной (катастрофической) опасности.


Центральный реакторный зал 4 блока после взрыва. Правее центра видна схема Е.

Почему важны эти факты? Из-за йодной ямы - эффекта изменения изотопного состава осколков деления при снижении мощности любого реактора, которое вносит постепенно увеличивающуюся отрицательную реактивность. Это называют еще “отравлением реактора” и заставляет постепенно извлекать поглощающие стержни, для того что бы мощность не пошла вниз. Эффект йодной ямы нарастает постепенно, достигая максимума через 11 часов после снижения мощности, что означает, что к моменту аварии реактор подойдет с большой отрицательной реактивностью - и это станет первым элементом в цепи причин аварии.

Разрешение на разгрузку энергоблока получено только к 23 часам и снижение мощности (с 50%) было начато в 23:10 25.04.86  Мощность, установленная в программе испытаний (700 МВт) была достигнута к 00:05 26.04.86. Далее согласно программе испытаний необходимо было включить в работу два ГЦН (в нормальной работе используется 6 из 8 ГЦН реактора), и приступить к выполнению основной части программы. Однако, этого не произошло, и все дальнейшие действия оперативного персонала АЭС были сплошной импровизацией между программой и реальной обстановкой на энергоблоке.

На этом месте стоит остановится и поговорить об основной теме расследования чернобыльской катастрофы: противостояния конструктора реактора и его эксплуатации. Проблема в том, что вину приходится делить между двумя этими сторонами и никак не получается полностью отбелить кого-то из участников, однако попытки такие начались с первых дней и не закончились и поныне. Фраза выше про импровизацию (вещь, недопустимая при работе с ядерными энергоустановками) и, например, такие факты, как отключение системы аварийного охлаждения реактора за 11 часов до испытаний (в место положенного часа) говорят далеко не в пользу эксплуатации, т.е. персонала станции. Однако дальше будет много проблем и с конструкторами РБМК. Продолжаем.

Кроме программы испытаний выбега турбогенератора должна была быть выполнена еще одна работа: измерение вибраций турбины на холостом ходу турбогенератора.


Это современный вид БЩУ РБМК-1000 (Курская АЭС), вид на место старшего инженера управления реактором (СИУРа).

Эти две работы, в общем-то, противоречат друг другу. Обе они требуют разгрузки турбогенератора, т.е. отключения его от внешней сети, но в одном случае разгрузка полная, до холостого хода (т.е. без выработки какой-либо электроэнергии), а в другом случае разгрузка только до уровня собственных нужд. В первом случае обороты холостого хода поддерживаются за счет (небольшой) подачи пара на турбину, и реактор для этого нужен, во втором случае пар не подается, и реактор не нужен, а обороты под нагрузкой собственных нужд сравнительно быстро падают.

В программе испытаний такая коллизия не была предусмотрена. Тем не менее, как пишет руководитель испытаний (и составитель программы) А.С. Дятлов в своих воспоминаниях ему "было здесь все ясно. И по подготовке к последнему эксперименту у А.Акимова нет вопросов, он еще 25 апреля смотрел".

Затем А.С. Дятлов временно (в 00ч.05мин.) покидает БЩУ, предоставив начальнику смены блока А.Акимову самому разбираться с тем, что им обоим было так ясно.


А это дизель-генераторы, такие же, как на ЧАЭС, подхват нагрузки которыми во время испытаний 26 апреля 1986 года совпал с моментом разрушения реактора.

Тем временем начато дальнейшее снижение мощности реактора, до мощности в 200 тепловых мегаватт, необходимых для вибрационных испытаний. В 00 ч 28 мин при тепловой мощности реактора около 500 МВт допущено непредусмотренное программой снижение тепловой мощности до 30 МВт (нейтронной мощности — до нуля); после паузы продолжительностью 4-5 мин начат подъем мощности. Этот момент тоже сыграет свою роль через снижение количество поглощающих стержней к моменту аварии.

При таком отношении к "рабочим программам" и к своим "должностным инструкциям" все дальнейшие смертные грехи, в которых обвиняют персонал, это просто детские шалости, не заслуживающие внимания.

Работа реактора на малом уровне мощности при малом запасе реактивности сопровождалась неустойчивостью теплогидравлических параметров и возможно неустойчивостью нейтронного поля. Об этом свидетельствуют многократные аварийные сигналы по уровню в барабане сепараторе (БС), срабатывания системы быстрого сброса лишнего пара БРУ-К, большие перерегулирования в расходе питательной воды (т.е. холодной воды, возвращающейся от конденсаторов турбины в контур реактора), и выходы из строя автоматичесих регуляторов нейтронной мощности. Именно поэтому в период с 00:35 по 00:45, видимо, чтобы сохранить реактор на мощности, были заблокированы аварийные сигналы по теплогидравлическим параметрам КМПЦ (и сигнал АЗ-5 по отключению 2-х ТГ). В 01ч.16 мин закончились работы по замеру вибраций, и турбогенератор был снова включен в сеть (для последующего выполнения программы выбега).


Турбогенератор типа К-500-65, стоявшие на ЧАЭС. А вот интересно, здесь продают запчасти от чернобыльских турбин. Никому не нужно?

Продолжение в части 2.



UPD: почему все же это был тепловой ядерный взрыв, а не взрыв гремучей смеси - Гремучая смесь (Originally posted by [livejournal.com profile] tnenergy):
"...Непонятно, откуда берется это упорство, и почему некоторым людям обязательно надо доказать окружающим, что взрыв ЧАЭС был не ядрным и никак иначе. Очевидно, что в ядерном реакторе нет других источников первичной энергии, чем цепная реакция ядерного деления, а все последующие явления - не более, чем трансформации этой энергии. Единственное важное отличие с точки зрения психологии в том, что водородный взрыв не требует разгона на мгновенных нейтронах и тем самым убирает вину в катастрофическом просчете с проектировщиков реактора, заменяя ее на просчётик поменьше..."

Кратко версия, которую отстаивает автор:
"Классическая версия, которую я отстаиваю заключается в том, что вытеснители СУЗ внесли достаточно реактивности что бы получить локальный разгон на мгновенных - как в авариях 1975 и 1982 годов, но при этом закипело слишком много каналов, и "схему Е" приподняло, оборвав большинство ТК. Тут произошел тут самый первый паровой взрыв, а одновременно с ним из-за обезвоживания - разгон всего реактора на мгновенных, с выделением сотен гигаджоулей, ну а дальше уже эта энергия трансформировалась во взрыв. Хорошо совпадает со всеми показаниями очевидцев, зарегистрированными данными и т.п."
From:
Anonymous( )Anonymous This account has disabled anonymous posting.
OpenID( )OpenID You can comment on this post while signed in with an account from many other sites, once you have confirmed your email address. Sign in using OpenID.
User
Account name:
Password:
If you don't have an account you can create one now.
Subject:
HTML doesn't work in the subject.

Message:

 
Notice: This account is set to log the IP addresses of everyone who comments.
Links will be displayed as unclickable URLs to help prevent spam.

Profile

zz_z_z: (Default)
zz_z_z

March 2017

S M T W T F S
    1234
567891011
12131415161718
19202122232425
262728 293031 

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jul. 21st, 2017 04:44 am
Powered by Dreamwidth Studios